

ESC User Manual

MODEL NAME: DR651B00(48V)

Ver.1.0

Contents

1.	Introduction	3
2.	Safety Precautions	3
	2.1. Precautions for Use	3
	2.2. Disposal Precautions	5
	2.3. Storage and Transportation Precautions	5
3.	Warranty	5
4.	Typical Characteristics	5
	4.1. Absolute Maximum Ratings	5
	4.2. Recommended Operating Conditions	6
	4.3. DC Electrical Characteristics	6
	4.4. A/D Converter Characteristics	7
	4.5. Protection Functions	7
5.	System Overview	9
	5.1. ESC Connection Diagram (PWM Control)	9
	5.2. ESC Connection Diagram (CAN Control)	. 10
	5.3. Control Board Overview	. 10
	5.4. Three-Phase Output Board Overview	. 10
	5.5. Additional Information on PWM Signal	. 11
	5.6. Input Capacitor Capacitance	. 11
6.	Interface Assignment	. 11
	6.1. External Interface Assignment	11
7.	Power Cable Assignment	. 12
	7.1. Three-Phase Output Board Lead Wire Assignment	. 12
8.	Dimensional Drawing	. 12
	8.1. Overall External Dimensions of the Completed Product	12

1. Introduction

This manual is a hardware instruction manual for the speed controller module (hereinafter referred to as ESC) that controls a three-phase brushless motor.

2. Safety Precautions

Please use this ESC at your own discretion. Our company is not responsible for any harm or damage caused by its use. The following information is important to prevent harm to you or others and to prevent damage to property, and to ensure safe and correct use of the product. Please read this manual carefully before use and follow the instructions.

Symbol	Explanation
AWARNING	Indicates that the user may be killed or seriously injured if handled incorrectly.
▲ CAUTION	Indicates that the user may suffer minor injuries or that property damage may occur if handled incorrectly.
NOTICE	Indicates a note.

2.1. Precautions for Use

	Precautions				
▲WARNING	Do not store or use this product in an area where explosive gases or dust may be generated. This may cause an explosion.				
▲WARNING	Do not use this product in a radiation environment. This product is not radiation-resistant.				
▲ CAUTION	Contacting the power terminals with your fingers or metal objects may result in electric shock or burns due to abnormal heat generation. Avoid unnecessary contact with the power terminals.				
▲ CAUTION	If the unit becomes abnormally hot, stop using it immediately. After stopping, confirm that the abnormal heat has subsided. There is a risk of burns.				
▲ CAUTION	Be careful not to touch the pin header during installation. There is a risk of injury.				
NOTICE	Do not disassemble, repair, or modify this unit.This may cause malfunctions or damage.				
NOTICE	Please ensure that there are no foreign objects inside the connector when connecting. This may cause a poor connection.				

NOTICE	Please be careful not to overtighten the screws. This may cause damage.
NOTICE	Do not apply excessive force to the connector. This may cause damage.
NOTICE	Please ensure that there is sufficient slack in the wiring when connecting. This may cause damage.
NOTICE	If you come into contact with any metal parts and experience any discomfort, stop using the product immediately and consult a medical professional.
NOTICE	Be careful not to allow oil, solvents, or other substances to come into contact with the product. This may cause the housing to deform or crack.
NOTICE	If the product becomes dirty, please be careful to wipe it clean without applying excessive force. Excessive cleaning may cause damage or discoloration of the housing. It is recommended to clean the product when it becomes dirty.
NOTICE	Do not handle the ESC by the cable only.
NOTICE	Do not insert or remove the lead wires while the product is powered.
NOTICE	Do not drop or strike the ESC forcefully. Even if there is no initial malfunction, we cannot guarantee the product warranty.
NOTICE	Please confirm the suitability for actual use in a driver-mounted state by yourself.
NOTICE	Beware of corrosive gases. This may cause rusting of metal parts and chemical effects on grease.
NOTICE	We do not guarantee the quality of the product after disassembly and reassembly.
NOTICE	Operators who handle the ESC directly and equipment that comes into contact with the ESC should take measures to prevent static electricity and leakage.
NOTICE	We cannot guarantee any patent issues other than the ESC. Please conduct a thorough investigation and use the product at your own risk.
NOTICE	Do not use this product for weapons or other military purposes.
NOTICE	Please note that the product name, specifications, appearance, etc., of the product listed in this manual may be changed without notice in order to improve quality.
NOTICE	Do not use this product for applications where it is expected to cause serious damage to life, body, or property, such as medical equipment or safety devices.

2.2. Disposal Precautions

When disposing of this product, please have it properly disposed of by a specialized industrial waste disposal company.

2.3. Storage and Transportation Precautions

- 1) Do not store this product in the following environments or conditions as it may impair performance or connector mating performance.
- ① Storage in places with high concentrations of corrosive gases such as sea breeze, Cl2, H2S, NH3, S, SO2, NO2, etc.
- ② Storage outside the recommended temperature and humidity range.
- 3 Storage in direct sunlight or in places where condensation may occur.
- 4 Storage in places where strong static electricity is generated.
- 2) When transporting and storing this product, handle the packaging box with the correct orientation (with "ASTER" indicated on the packaging box facing upward). If the packaging box is dropped with the top side down, excessive force may be applied to the product, causing damage such as bent terminals.

3. Warranty

The warranty period for this product is one year from the date of delivery to the customer by our company.

4. Typical Characteristics

This chapter describes the electrical characteristics. Although the characteristics are controlled by software, this manual describes the basic characteristics.

4.1. Absolute Maximum Ratings

Table 4.1 Absolute Maximum Ratings (Reference)

Item	Symbol	Min	Max	Unit
Battery Voltage	Vbat	-0.3	60	٧
Drain Current (AC U, V, W phase) at 25°C	Iph_U、V、W	_	60	Ap-p
Drain Current (Pulse U, V, W phase) t=100us	Idp	_	120	Ap-p
Maximum Potential Difference (between CANH and CANL)	Vdiff	-58	58	٧
Storage Temperature	Tstg	-20	85	°C

^{*} Measurement Environment: 20°C

^{*} Absolute maximum ratings are the limits that should never be exceeded, even momentarily. Exceeding any single rating can lead to device destruction or degradation, resulting in hazards such as explosion or combustion. Therefore, it is essential to configure the application equipment to ensure that absolute maximum ratings (current, voltage, power consumption, temperature) are not exceeded.

4.2. Recommended Operating Conditions

Table 4.2 Recommended Operating Conditions

		•			
Item	Symbol	Min	Standard	Max	Unit
Battery voltage	Vbat	38.4	44.4	50.4	V
Recommended replacement time	_	_	_	500	Н
Operating ambient temperature	Topr	-10		45	°C

XThe recommended replacement time may vary depending on the results of reliability assessments and maintenance history.

4.3. DC Electrical Characteristics

XThese specifications may change depending on the selected IC. Changes to some ICs may result in changes to the specifications.

Table 4.3.1 DC Electrical Characteristics (MCU Basic Characteristics) (Reference Values)

	Item		Symbol	Condition	Min	Avg.	Max	Unit
	Supply Voltage		VDD	fOSC = 8 ~ 10 MHz fsys = 1 ~80 MHz	4.5	_	5.5	٧
	Low-level Input Voltage	Schmitt Trigger Input	VIL1	VIL1 VDD = 4.5V ∼5.5V		1	0.25*VDD	V
	High-level Input Voltage	Schmitt Trigger Input	VIH1	VDD = 4.5V ∼5.5V	0.75*VDD	ı	VDD	٧
мси	Low-level Output Voltage		VOL	IOL = 1.6 mA	-	1	0.4	V
	High-level Output Voltage		VOH	IOH = -1.6 mA	4.1	1	_	V
	Input Leakage Current		ILI1	$0.0 \le VIN \le VDD$	-	0.02	±5	μΑ
	Output Leakage Current		ILO	$0.2 \le VIN \le VDD -0.2$	-	0.05	±10	μΑ
	Input Control Frequency		Fcont		10	-	1000	Hz
	Schmitt Trigger Hysteresis		VTH	$4.5 \leq VDD \leq 5.5$	0.3	0.6	-	V
	Pin Capa	citance	CIO	fc=1MHz	_	_	10	pF

XThe operating ambient temperature is assumed to be within the environmental conditions of Japan.

 [★]Reference propeller size: FA28.2 × 9.2

Table 4.3.2 DC Electrical Characteristics (Pre-driver Basic Characteristics) (Reference Values)

	Item	Symbol	Condition	Min	Avg.	Max	Unit
	Supply Voltage	VDD	_	4.4	_	60	V
	High-Side Voltage	VHB	_	-10		120	V
プリドライバ	Operating Current	IPVDD_OP	EN_GATE = enabled; LDO reg = no load		10		mA
	Gate Drive Frequency Low-Side Gate Current	Fgate		10	_	50	KHz
		VLOH			2.5		Α
	High-Side Gate Current	VHOL			2.5		Α

XThe gate drive frequency is set automatically within the system based on the motor's characteristics.

4.4. A/D Converter Characteristics

This product features a built-in 12-bit ADC within the MCU and an operational amplifier on the pre-driver side.

Table 4.4.1Digital-to-Analog Converter (DAC) Characteristics (Control Board MCU) (Reference Values)

Item	Condition	Min	Avg.	Max	Unit
Analog Reference Voltage	-	_	5.05	-	V
Analog Input Voltage	-	0	_	5.05	V
Current Consumption	_	_	3.5	5	mA
Integral Nonlinearity Error	ATALL 1	-6	_	6	
Differential Nonlinearity Error	AIN load resistance ≤ 600 Ω	-5	_	5	LCD
Offset Error	AIN load capacitance $\geq 0.1 \mu F$ conversion time $\geq 2 \mu s$	-5	_	5	LSB
Full Scale Error	Conversion time 2 2 μs	-6	_	6	

Table 4.4.2 Analog-to-Digital Converter (ADC) Characteristics (Three-Phase Output Board Pre-driver) (Reference Values)

Item	tem Condition		Avg.	Max	Unit
Current sense gain	GAIN_CSx=00		10		V/V
Current sense gain error	Input differential > 0.025 V	-3		3	%
Current sense timing setting	GCSA = 10; Vstep = 0.46 V		300		ns
DC offset voltage	GCSA = 10; input shorted; RTI	-4		4	mV
Input offset error	GCSA = 10; input shorted; RTI		10		uV/C
Input bias current	VIN_COM = 0; SOx open			100	uA
Input bias current offset	IBIAS (SNx-SPx); VIN_COM = 0; Sox open		1		uA

4.5. Protection Functions

This product is equipped with various hardware-based fault detection and protection functions. An audible notification function is provided, which vibrates the motor within the audible frequency range to simply notify the ESC status.

Table 4.5 List of Protection Functions

Item	Content	Protection Action
Battery Under-voltage Protection	VBAT ≦ 18V	Error signal output
Battery Over-voltage Detection	VBAT ≧ 58V	Error signal output
Short Circuit Protection	VBAT ≦ 0.5V	Stop operation
Overcurrent Protection	70A	Error signal output
DC/DC Converter Output Voltage Abnormal Detection	5.05V±10%	Error signal output, Stop operation
Analog Voltage Under-voltage Protection	AVDD = 3.3~3.5V or below	Error signal output
Abnormal Temperature Detection	Pre-driver IC abnormal temperature 140°C	Error signal output
Abnormal Temperature Protection	Pre-driver IC limit temperature 175°C	Stop operation
Slip Detection	Automatic recovery from slip, error output if unable to recover	Error signal output

^{*}Automatic recovery from slip requires the motor to be self-rotating after a slip occurs and does not guarantee recovery from all slip conditions.

Table 4.6 List of Voice Notification Functions

Notification Conter	nt	Notification Sound
		1-cell sound 277.183Hz 50ms_ON 50ms_OFF
		2-cell sound 293.665Hz 50ms_ON 50ms_OFF
Patton, Valtara	Normal	3-cell sound 311.127Hz 50ms_ON 50ms_OFF
Battery Voltage		4-cell sound 329.628Hz 50ms_ON 50ms_OFF
		5-cell sound 261.626Hz 200ms_ON 50ms_OFF
	Abnormal	No sound
		261.626Hz 150ms_ON
Flight Doody Doogs	L :	329.628Hz 150ms_ON
Flight Ready Recogni	uon	391.955Hz 150ms_ON
		(in sequence)
System Abnormal		523.251Hz 100ms_ON 100ms_OFF, repeated
No Control Signal		523.251Hz 2000ms_ON 1000ms_OF, repeated

A voice notification will be played within 3 seconds after power-on.

The notification order is as follows

Voltage feasibility	signal mode	pecified age time
---------------------	-------------	----------------------

Notification period: 3s

Table 4.7 Battery voltage notification number

Battery voltage	通知パターン
18	5-cell sound to 1-cell sound
20	5-cell sound to 1-cell sound
24	5-cell sound to 1-cell sound to 2-cell sound
48	5-cell sound to 5-cell sound to 2-cell sound

5. System Overview

In this chapter, we will explain the overall system configuration and provide an outline of each circuit board.

5.1. ESC Connection Diagram (PWM Control)

When controlling motor speed using PWM, connect one PWM signal to each ESC.

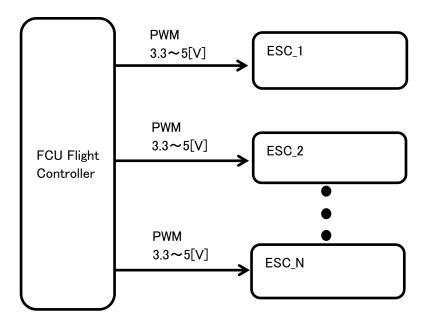


Figure 5.2 ESC Connection Diagram (PWM Control)

5.2. ESC Connection Diagram (CAN Control)

When controlling motor speed via CAN communication, please attach a $120\,\Omega$ termination resistor between CAN_H and CAN_L. The ESC does not include a termination resistor.

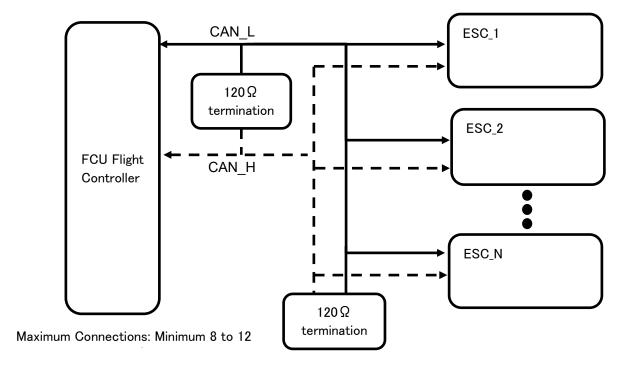
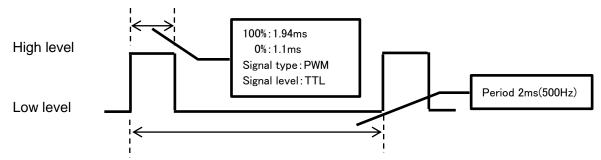


Figure 5.3 ESC Connection Diagram (CAN Bus Control)

XIf you plan to use CAN communication, please contact Aster Corporation separately.

5.3. Control Board Overview

- Uses an ARM Cortex-M4 core from ARM
- Vector engine
 - Calculation function for motor control
- RAM: 34Kbyte (MCU)
- FLASHROM: 256Kbyte(MCU)
- EEPROM: 256Kbyte
- Debug PORT: UART, JTAG, CAN
- Control PWM input: 400Hz (changeable within the maximum frequency of 1KHz)
- CAN communication: Maximum transfer rate 1Mbps


5.4. Three-Phase Output Board Overview

- Power MOSFET
- Current detection resistor: 3 shunt
- Temperature monitoring component: Power MOSFET
- Gate driver: Charge pump type
- Gate drive frequency: 30KHz

5.5. Additional Information on PWM Signal

The current requirement specifies the PWM signal as follows.

5.6. Input Capacitor Capacitance

The input capacitor capacitance of this product is designed based on the input cable length, but since the wiring length varies depending on each user's situation, it is important to have an optimal capacitor capacitance for stable operation. Please refer to the recommended capacitor capacitance table below and adjust the capacitor capacitance according to your application.

Table 5.1 Connector for communication with control equipment

Cable length[m]	Capacitor capacitance[uF]
0.5	100
1	220
2	470

XAssuming AWG14 cable size. For smaller cable sizes, additional capacitance may be required.

6. Interface Assignment

In this chapter, we will explain the external communication interfaces of the ESC.

6.1. External Interface Assignment

The pin assignment of the control signal connector is shown below.

Table 6.1 Connector for communication with control equipment

Terminal No.	Signal Name	Function	Attached Cable Marking
1	PWM input	PWM control signal	Red
2	GND	GND	None
3	GND	GND	
4	CAN_H	CAN communication signal	Unused
5	CAN_L	CAN communication signal	Onusea
6	POWER(5V)	5[V] output power	

XFor CAN communication, please contact Aster Corporation separately.

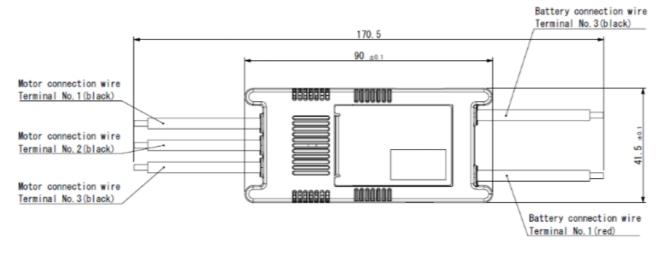
7. Power Cable Assignment

本 In this chapter, we will explain the connector assignment for the power supply.

7.1. Three-Phase Output Board Lead Wire Assignment

Table 7.1 Pin Assignment for Motor Connection Wires (CW)

Terminal No.	Signal Name	Function
1	W_Phase (Black wire)	W phase output signal
2	V_Phase (Black wire)	V phase output signal
3	U_Phase (Black wire)	U phase output signal


Table 7.2 Battery connection wire pin assignment

Terminal No.	Signal Name	Function
1	POWER (Red wire)	Battery power supply
3	GND (Black wire)	GND

8. Dimensional Drawing

In this chapter, we will describe the overall external dimensions of the completed product.

8.1. Overall External Dimensions of the Completed Product

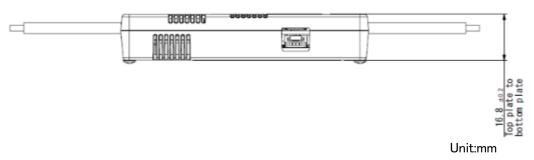


Figure 8.1 Overall external dimensions of the completed product

Revision history

Ver	Date of Issue	Revision History
1.0	1/AUG/2024	Initial Release

<u>Note</u>

<u>Note</u>

Manufacturer: Aster Co., Ltd.

Address: 12-3 Yanagida, Yokote City, Akita Prefecture 013-0054, Japan